Synthesis, Structure, and Reactivity of $\{\eta^3$ -HB(3-Bu^tpz)₃BeCH₃, a Terminal Beryllium Alkyl Complex Supported by Tris(3-tert-butylpyrazolyl)hydroborato Ligation

Runvu Han and Gerard Parkin*

Department of Chemistry, Columbia University, New York, New York 10027

Received May 7, 1993

Introduction

We recently described the use of the sterically-demanding tris-(3-tert-butylpyrazolyl)hydroborato ligand, [HB(3-Bu^tpz)₃]⁻(3- $Bu^{t}pz = 3-C_{3}N_{2}Bu^{t}H_{2})^{1}$ to provide a well-defined coordination environment for stabilizing monomeric alkyl and hydride derivatives of the s- and p-block metals.²⁻⁵ One such example is $\{\eta^3-$ HB(3-Bu^tpz)₃}BeH, the first terminal beryllium hydride complex to be structurally characterized by X-ray diffraction.⁶ In this paper we report the synthesis, structure, and reactivity of the related beryllium methyl derivative, $\{\eta^3$ -HB(3-Bu^tpz)_3\}BeCH_3.

Results

The [tris(pyrazolyl)hydroborato]beryllium methyl complex, $\{\eta^3$ -HB(3-Bu^tpz)_3\}BeCH_3, is readily prepared by the reaction of $Tl{\eta^3}-HB(3-Bu^tpz)_3$ with $Be(CH_3)_2$ (eq 1). The molecular

structure of $\{\eta^3$ -HB(3-Bu^tpz)₃}BeCH₃ has been determined by X-ray diffraction, as shown in Figure 1. Selected bond lengths and angles are presented in Tables I and II, and atomic coordinates, in Table III. $\{\eta^3$ -HB(3-Bu^tpz)₃}BeCH₃ reacts (i) with H₂S to give $\{\eta^3$ -HB(3-Bu^tpz)_3\}BeSH and CH₄ and (ii) with I₂ to give $\{\eta^3$ -HB(3-Bu^tpz)₃}BeI and CH₃I, as illustrated in Scheme I. However, $\{\eta^3$ -HB(3-Bu^tpz)_3\}BeCH₃ does not react with CH₃I at 100 °C.

Discussion

Our recent studies have described the synthesis of a series of tris(3-tert-butylpyrazolyl)hydroborato half-sandwich beryllium complexes $\{\eta^3$ -HB(3-Bu^tpz)_3\}BeX (X = H, Cl, Br, I, SH),⁶ which complements the cyclopentadienyl and pentamethylcyclopentadienyl series (C₅H₅)BeX (X = F, Cl, Br, I, H, R, BH₄)⁷ and $(C_{5}Me_{5})BeX (X = H, {}^{8}Cl, {}^{9}PBu^{t_{2}10})$. However, although the hydride derivative $\{\eta^3$ -HB(3-Bu^tpz)₃}BeH was readily obtained by the reaction of $\{\eta^3$ -HB(3-Bu^tpz)₃}BeX (X = Cl, Br) with LiAlH₄, we were unable to synthesize the corresponding methyl

- (1) Trofimenko, S.; Calabrese, J. C.; Thompson, J. S. Inorg. Chem. 1987, 26. 1507-1514
- Gorrell, I. B.; Looney, A.; Parkin, G. J. Chem. Soc., Chem. Commun. (2)1990, 220-222.
- (a) Han, R.; Looney, A.; Parkin, G. J. Am. Chem. Soc. 1989, 111, (3)(3) (a) Han, K.; Looney, A., Farkin, G. J. Am. Chem. Soc. 1991, 10, 1010–1020. (c) Han, R.; Parkin, G. J. Am. Chem. Soc. 1991, 10, 1010–1020. (c) Han, R.; Parkin, G. J. Am. Chem. Soc. 1992, 114, 748–757.
 (4) Han, R.; Gorrell, I. B.; Looney, A. G.; Parkin, G. J. Chem. Soc., Chem.
- Commun. 1991, 717-719
- Looney, A.; Parkin, G. Polyhedron 1990, 9, 265-276.
- Han, R.; Parkin, G. Inorg. Chem. 1992, 31, 983-988. Schmidbaur, H. Gmelin 1987, Be-Org. 1, 155-183.
- Andersen, R. A. Personal communication. (8)
- Burns, C. J.; Andersen, R. A. J. Organomet. Chem. 1987, 325, 31-37.
- Atwood, J. L.; Bott, S. G.; Jones, R. A.; Koschmieder, S. U. J. Chem. (10)Soc., Chem. Commun. 1990, 692-693.

Figure 1. Molecular structure of $\{\eta^3-HB(3-Bu^tpz)_3\}BeCH_3$.

Table I. Selected Bond Lengths (A	Ł))
-----------------------------------	----	---

	· · · • • • • •		
Be-C(1)	1.708(6)	Be-N(12)	1.860(5)
Be-N(22)	1.855(6)	Be-N(32)	1.882(4)
N(11) - N(12)	1.382(6)	N(11)-B	1.526(7)
N(21) - N(22)	1.369(5)	N(21)-B	1.524(7)
N(31)-N(32)	1.360(6)	N(31)-B	1.529(7)
Table II. Selected B	ond Angles (deg)	
C(1)-Be-N(12)	120.1(4)	C(1)-Be-N(22)	120.3(3)
C(1)-Be-N(32)	118.8(2)	N(12)-Be-N(22)	96.8(2)
N(12)-Be-N(32)	98.2(2)	N(22)-Be-N(32)	97.7(3)
N(12) - N(11) - B	119.0(4)	Be-N(12)-N(11)	111.7(3)
N(22)-N(21)-B	120.4(4)	Be-N(22)-N(21)	110.9(3)
N(32) - N(31) - B	119.7(3)	Be-N(32)-N(31)	111.4(3)
N(11)-B-N(21)	108.1(4)	N(11) - B - N(31)	106.6(4)
N(21)-B-N(31)	107.8(4)		• •

Table III. Atom Coordinates (×104) and Temperature Factors (Å² × 10³)

atom	x	у	Z	Ua
Be	1960	2386(4)	7510	41(2)
C(1)	62(6)	2130(3)	7742(5)	61(2)
N(11)	4633(5)	1912(2)	6561(4)	47(1)
N(12)	3101(5)	1608(2)	6596(4)	41(1)
N(21)	3909(5)	3473(2)	6472(4)	43(1)
N(22)	2303(4)	3367(2)	6480(4)	38(1)
N(31)	5021(4)	2764(2)	8754(4)	46(1)
N(32)	3572(5)	2602(2)	9118(4)	44(1)
C(11)	5429(6)	1324(3)	5951(5)	55(2)
C(12)	4451(7)	629(3)	5555(5)	62(2)
C(13)	2987(6)	815(3)	5949(4)	48(2)
C(14)	1512(7)	244(3)	5693(5)	60(2)
C(15)	1177(8)	-71(4)	7105(6)	89(3)
C(16)	1813(9)	-557(4)	4810(8)	111(3)
C(17)	88(7)	733(4)	4864(6)	81(2)
C(21)	4142(6)	4187(3)	5762(5)	54(2)
C(22)	2680(6)	4571(3)	5275(5)	55(2)
C(23)	1531(6)	4049(3)	5720(4)	45(2)
C(24)	-263(6)	4188(3)	5474(5)	50(2)
C(25)	-1167(7)	3401(4)	4740(6)	71(2)
C(26)	-766(7)	4385(4)	6899(6)	73(2)
C(27)	-714(7)	4964(4)	4481(6)	83(2)
C(31)	6148(6)	2860(3)	9920(5)	58(2)
C(32)	5481(7)	2763(3)	11064(5)	63(2)
C(33)	3836(7)	2611(3)	10555(5)	50(2)
C(34)	2520(7)	2495(3)	11417(5)	62(2)
C(35)	3274(9)	2589(5)	12993(6)	104(3)
C(36)	1269(8)	3199(4)	11046(6)	86(3)
C(37)	1821(8)	1583(4)	11208(6)	82(3)
В	5138(7)	2806(4)	7190(6)	52(2)

^a Equivalent isotropic U defined as one-third of the trace of the orthogonalized U_{ii} tensor.

derivative $\{\eta^3 - HB(3 - Bu^tpz)_3\}$ BeCH₃ by the related reaction with CH₃Li. Nevertheless, we have now found that the methyl derivative $\{\eta^3$ -HB(3-Bu^tpz)_3\}BeCH₃ can be synthesized cleanly by the direct reaction of $Be(CH_3)_2$ with the thallium reagent $Tl{\eta^3}-HB(3-Bu^tpz)_3$ (eq 1). The reaction is similar to those used previously to prepare magnesium and zinc alkyl derivatives $\{\eta^3$ -

0020-1669/93/1332-4968\$04.00/0 © 1993 American Chemical Society

Scheme I

HB(3-Bu¹pz)₃}MR, in which the deposition of Tl due to decomposition of unstable [TIR] provides an effective driving force for the reaction.2-5,11

The molecular structure of $\{\eta^3$ -HB(3-Bu^tpz)₃}BeCH₃ has been determined by X-ray diffraction (Figure 1), confirming both the monomeric nature of the complex and the η^3 -coordination mode of the tris(pyrazolyl)hydroborato ligand. In this regard it is interesting to note that the beryllium derivatives $\{\eta^2 - B(pz)_4\}_2 Be$ and $[{\eta^2-HB(pz)_3}Be(\mu-OH)]_3$ were recently reported, but in these complexes the poly(pyrazolyl)borate ligands adopt only an η^2 coordination mode.¹² The trigonally distorted tetrahedral coordination environment about beryllium in $\{\eta^3-HB(3-Bu^tpz)_3\}$ -BeCH₃ is similar to those in the derivatives $\{\eta^3$ -HB(3-Bu^tpz)_3\}BeH and $\{\eta^3$ -HB(3-Bu^tpz)₃}BeBr. However, the average Be-N bond length [1.86(2) Å] in $\{\eta^3$ -HB(3-Bu^tpz)₃}BeCH₃ is longer than those in both $\{\eta^3$ -HB(3-Bu^tpz)₃}BeH [1.778(4)Å] and $\{\eta^3$ -HB(3-Butpz)₃}BeBr [1.80(2) Å] and is presumably a reflection of increased steric interactions between the Be-methyl group and the tert-butyl substituents of the tris(3-tert-butylpyrazolyl)hydroborato ligand. Indeed, the van der Waals radius of CH₃ (2.0 Å) is greater than those of Br (1.95 Å) and H (1.2 Å).¹³

The Be-CH₃ bond length in $\{\eta^3$ -HB(3-Bu^tpz)₃}BeCH₃ [1.708(6) Å] is similar to the sum of the covalent radii of Be and C $(1.66 \text{ Å})^{13}$ and also compares well with that of the cyclopentadienyl analogue (C₅H₅)BeCH₃ [1.706(3) Å] measured in the gas phase by electron diffraction.¹⁴ However, the Be-C bond length in $\{\eta^3$ -HB(3-Bu¹pz)_3\}BeCH₃ is substantially shorter than those in (i) "ate" derivatives such as Li₂Be(CH₃)₄ [1.84(10) Å]¹⁵ and (ii) bridging methyl derivatives such as solid $[(CH_3)_2Be]_n$ [1.93(2) Å].¹⁶ For reference, a selection of Be-C bond lengths is presented in Table IV, indicating a relatively large range of Be-CH₃ bond lengths from 1.698(5) Å, in gaseous $(CH_3)_2Be$, to 1.93(2) Å, in solid $[(CH_3)_2Be]_n$.

The beryllium methyl group in $\{\eta^3$ -HB(3-Bu^tpz)₃}BeCH₃ has also been characterized by 1H, 13C, and 9Be NMR spectroscopies, as summarized in Table V. Notably, the ¹H NMR resonance of the beryllium methyl group is observed as a relatively sharp singlet at δ 0.57 ppm (Figure 2), whereas the ¹³C NMR resonance at δ 4.7 ppm is broadened considerably as a result of quadrupolar relaxation by the beryllium nucleus (Figure 3). The 9Be NMR resonance of $\{\eta^3$ -HB(3-Bu¹pz)_3\}BeCH₃ is observed at δ 5.2 ppm (relative to $[Be(H_2O)_4]^{2+}$), close to the range δ 1-4 ppm established previously for the four-coordinate beryllium complexes ${\eta^3-HB(3-Bu^tpz)_3}BeX (X = H, Cl, Br, I, SH)^6$ but substantially

- 3084. Weiss, E.; Wolfrum, R. J. Organomet. Chem. 1968, 12, 257-262.
- (16) Snow, A. I.; Rundle, R. E. Acta Crystallogr. 1951, 4, 348-352.

Table IV. Be-C Bond Lengths

compound	method ^a	d(Be-C), Å	ref
(CH ₃) ₂ Be	ED	1.698(5)	d
Bu ^t ₂ Be	ED	1.699(3)	е
(C ₅ H ₅)BeCH ₃	ED	1.706(3)	ſ
${\eta^3}$ -HB(3-Bu ^t pz) ₃ }BeCH ₃	XD	1.708(6)	this work
$(CH_3)Be(\mu - OSiMe_3)]_4$	XD	1.71(2)	g
$[CH_3Be(\mu - CCMe)(NMe_3)]_2$	XD	1.748(7)	ĥ
$[Na(OEt_2)][(CH_2CH_3)_2Be(\mu-H)]_2$	XD	1.766(8)	i
		1.810(8)	
(CH ₃) ₂ Be(quinuclidine) ₂	XD	1.81	j
		1.85	
Li ₂ Be(CH ₃) ₄	XD	1.84(10)	k
LiBeBu ^t ₃	XD	1.812(4)	1
		1.854(4)	
		1.864(3)	
[(CH ₃) ₂ Be] _n	XD	1.93(2)	m

^a ED = electron diffraction; XD = X-ray diffraction. ^b The Becyclopentadienyl bond lengths are 1.923(3) Å. ^c The Be(μ -CCMe)₂B bond lengths are 1.852(6) and 1.890(6) Å. d Almenningen, A.; Haaland, A.; Morgan, G. L. Acta Chem. Scand. 1969, 23, 2921-2922. * Almenningen, A.; Haaland, A.; Nilsson, J. E. Acta Chem. Scand. 1968, 22, 972-976. ^fDrew, D. A.; Haaland, A. Acta Chem. Scand. 1972, 26, 3079-3084. ⁸ Mootz, D.; Zinnius, A.; Böttcher, B. Angew. Chem., Int. Ed. Engl. 1969, 8, 378-379. * Morosin, B.; Howatson, J. J. Organomet. Chem. 1971, 29, 7-14. ¹ Adamson, G. W.; Bell, N. A.; Shearer, H. M. M. Acta Crystallogr. 1981, B37, 68-71. ¹ Whitt, C. D.; Atwood, J. L. J. Organomet. Chem. 1971, 32, 17-25. * Weiss, E.; Wolfrum, R. J. Organomet. Chem. 1968, 12, 257-262. Wermer, J. R.; Gaines, D. F.; Harris, H. A. Organometallics 1988, 7, 2421-2422. "Snow, A. I.; Rundle, R. E. Acta Crystallogr. 1951, 4, 348-352.

Table V. 1H, 13C, and 9Be NMR Parameters for the Be-CH1 Group in $\{\eta^3$ -HB(3-Bu^tpz)₃}BeCH₃

nucleus	δ	nucleus	δ	nucleus	δ
ιH	0.56	9Be	5.2	¹³ C	4.7

different from that for the cyclopentadienyl derivative (C_5H_5) -BeCH₃ (δ -20.4 ppm).¹⁷

The reactivity of the methyl complex $\{\eta^3 - HB(3 - Bu^t pz)_3\}$ BeCH₃ toward H_2S and I_2 (Scheme I) is analogous to that of the hydride derivative ${\eta^3-HB(3-Bu^tpz)_3}BeH.^6$ Thus, the Be-C bond is cleaved by H₂S to give the thiol derivative $\{\eta^3$ -HB(3-Bu^tpz)_3\}-BeSH and CH₄, while I₂ cleaves the Be-CH₃ bond giving { η^3 -HB(3-Bu^tpz)₃}BeI and CH₃I. However, whereas the hydride derivative $\{\eta^3$ -HB(3-Bu^tpz)_3\}BeH reacts with CH₃I at room temperature, to give $\{\eta^3$ -HB(3-Bu^tpz)_3\}BeI, the methyl derivative ${\eta^3-HB(3-Bu^tpz)_3}BeCH_3$ does not react with CH₃I at 100°C and is stable under these conditions.

Experimental Section

General Considerations. All manipulations were performed using a combination of glovebox, high-vacuum, and Schlenk techniques.¹⁸

Gilman, H.; Jones, R. G. J. Am. Chem. Soc. 1946, 68, 517-520 Sohrin, Y.; Kokusen, H.; Kihara, S.; Matsui, M.; Kushi, Y.; Shiro, M. (11)(12)

Chem. Lett. 1992, 1461-1464. $r_{cov}(Be) = 0.89$ Å, $r_{cov}(C) = 0.77$ Å. Pauling L. The Nature of the Chemical Bond, 3rd. ed.; Cornell University Press: Ithaca, NY, 1960. (13)

⁽¹⁴⁾ Drew, D. A.; Haaland, A. Acta Chem. Scand., Ser. A 1972, 26, 3079-

⁽a) Gaines, D. F.; Coleson, K. M.; Hillenbrand, D. F. J. Magn. Reson. 1981, 44, 84-88. (b) Kovar, R. A.; Morgan, G. L. J. Am. Chem. Soc. 1970, 92, 5067-5072.

Figure 2. ¹H NMR spectrum of $\{\eta^3$ -HB(3-Bu^tpz)₃}BeCH₃ in C₆D₆ (δ 7.15).

Figure 3. ¹³C{¹H} NMR spectrum of { η^3 -HB(3-Bu⁴pz)₃}BeCH₃ in C₆D₆ (δ 128).

Solvents were purified and degassed by standard procedures. ¹H and ¹³C NMR spectra were obtained on Varian VXR 200, 300, and 400 spectrometers, and ⁹Be NMR spectra, on a Varian VXR 300 spectrometer at 42.16 MHz. All J values are reported in hertz. IR spectra were recorded as Nujol mulls between KBr disks on a Perkin-Elmer 1420 spectrophotometer and are reported in cm^{-1} . Mass spectra were obtained on a Nermag R10-10 mass spectrometer using chemical ionization (NH₃ or CH₄) techniques. Elemental analyzer. Be(CH₃)₂¹⁹ and Tl{ η^{3} -HB(3-Bu¹p₃)¹ were prepared by the literature methods. *Caution:* Beryllium and thallium complexes are extremely toxic and should be handled with due care.

Synthesis of {n³-HB(3-Bu^tpz)₃}BeCH₃. Be(CH₃)₂ (40 mg, 1.0 mmol) was added to a solution of $Tl{\eta^3}-HB(3-Bu^tpz)_3$ (580 mg, 1.0 mmol) in benzene (ca. 40 mL), resulting in the immediate formation of a black deposit of Tl metal. The mixture was filtered after 20 min at room temperature and the solvent removed under reduced pressure, giving $\{\eta^3$ -HB(3-Bu¹pz)₃|BeCH₃ as a white solid (350 mg, 85%). Anal. Calcd for $\{\eta^3$ -HB(3-Bu^tpz)_3\}BeCH_3: C, 65.2; H, 9.2; N, 20.7. Found: C, 64.6; H, 9.3; N, 20.1. IR data: 2524 (v_{B-H}). MS: m/z 406 (M⁺ + 1). ¹H NMR (C₆D₆): δ 1.51 [27H, s, { η^3 -HB{C₃N₂H₂C(CH₃)₃}, 5.82 [3H, d, $^3J_{H-H}$ = 2.2, η^3 -HB{C₃N₂H₂C(CH₃)₃], 7.24 [3H, d, ${}^3J_{H-H}$ = 2.2, η^3 -HB-{C₃N₂H₂C(CH₃)₃], 0.57 [3H, s, BeCH₃]. 13 C NMR (C₆D₆): δ 31.2 $[q, {}^{1}J_{C-H} = 126$, spt (partial res), ${}^{3}J_{C-H} = 4$, η^{3} -HB{C₃N₂H₂C(CH₃)₃]₃], 32.4 [dct (partial res), ${}^{2}J_{C-H} = 4$, η^{3} -HB{C₃N₂H₂C(CH₃)₃]₃], 103.3 [d, ${}^{1}J_{C-H} = 176$, d, ${}^{2}J_{C-H} = 9$, η^{3} -HB{ $C_{3}N_{2}H_{2}C(CH_{3})_{3}$ }, 133.6 [d, ${}^{1}J_{C-H}$ = 185, d, ${}^{2}J_{C-H}$ = 7, η^{3} -HB{ $C_{3}N_{2}H_{2}C(CH_{3})_{3}$], 165.1 [s, η^{3} -HB- $\{C_3N_2H_2C(CH_3)_3\}_3$, 4.7 [q, ${}^1J_{C-H} = 112$, BeCH₃]. ⁹Be NMR (C₆D₆; relative to $[Be(H_2O)_4]^{2+}$ in aqueous $Be(NO_3)_2$: $\delta 5.2 (W_{1/2} = 64 \text{ Hz})$.

Reaction of $\{\eta^3$ -**HB(3-Bu'pz)_3}BeCH₃ with H₂S.** A solution of $\{\eta^3$ -**HB(3-Bu'pz)_3}BeCH₃** (20 mg, 0.05 mmol) in benzene- d_6 (0.7 mL) in a 5-mm NMR tube was treated with H₂S (1 atm), and the mixture was heated at 70°C for 3 days. The reaction was monitored by ¹H NMR spectroscopy, which demonstrated the complete formation of $\{\eta^3$ -HB(3-Bu'pz)₃}BeSH⁶ and CH₄.

Reaction of $\{\eta^3$ -HB(3-Buⁱpz)₃}BeCH₃ with I₂. A solution of $\{\eta^3$ -HB(3-Buⁱpz)₃}BeCH₃ (20 mg, 0.05 mmol) in benzene-d₆ (0.7 mL) in a 5-mm NMR tube was treated with I₂ (15 mg, 0.06 mmol) at room temperature.

Table VI. Crystal and Intensity Collection Data

formula	C ₂₂ H ₃₇ N ₆ BBe	Z	2
fw	405.4	radiation ((λ , Å)	Mo Kα (0.710 73)
lattice	monoclinic	space group	Pn (No. 7)
a, Å	8.453(4)	ρ (calcd), g cm ⁻³	1.10
b, Å	15.335(5)	μ (Mo K α), cm ⁻¹	0.7
c, Å	9.626(3)	goodness of fit	1.112
β, deg	101.21(3)	R	0.0518
$V Å^3$	1224(1)	R ₂ ^a	0.0505
V, A ³	1224(1)	<i>K</i> ₩ ⁻	0.0505
c, Å	9.626(3)	$R_{w^{a}}$	1.112
β, deg	101.21(3)		0.0518
V, Å ³	1224(1)		0.0505

^a Weighting scheme: $w = [\sigma^2(F) + gF^2]^{-1}$.

The reaction was monitored by ¹H NMR spectroscopy, which demonstrated the immediate formation of $\{\eta^3$ -HB(3-Bu⁴pz)₃\}BeI⁶ and CH₃I.

Attempted Reaction of $\{\eta^3$ -HB(3-Bu[†]pz)₃}BeCH₃ with CH₃I. A solution of $\{\eta^3$ -HB(3-Bu[†]pz)₃}BeCH₃ (20 mg, 0.05 mmol) in benzene-d₆ (0.7 mL) in a 5-mm NMR tube was treated with CH₃I (4 μ L, 0.06 mmol), and the mixture was heated at 100°C for 2 days. The sample was monitored by ¹H NMR spectroscopy, which demonstrated that no reaction had occurred.

X-ray Structure Determination of $\{\eta^3$ -HB(3-Bu^tpz)₃}BeCH₃. Crystal data and data collection and refinement parameters are summarized in Table VI. A single crystal of $\{\eta^3$ -HB(3-Bu^tpz)_3\}BeCH_3 grown from benzene was mounted in a glass capillary and placed on a Nicolet R3m diffractometer. The unit cell was determined by the automatic indexing of 25 centered reflections and confirmed by examination of the axial photographs. Intensity data were collected using graphite-monochromated Mo K α X-radiation ($\lambda = 0.71073$ Å). Check reflections were measured every 100 reflections, and the data were scaled accordingly and corrected for Lorentz and polarization effects. The structure was solved using preliminary coordinates for the $[{\eta^3-HB(3-Bu^tpz)_3}Be]$ moiety derived for the isomorphous $\{\eta^3$ -HB(3-Bu^tpz)₃}BeBr derivative, followed by standard difference map techniques on a Data General NOVA 4 computer using SHELXTL.²⁰ Systematic absences were consistent with the space groups Pn and P2/n, but consideration of the E value statistics and the molecular symmetry suggested the choice Pn (No. 7). All nonhydrogen atoms were refined anisotropically. Most of the hydrogen atoms were located in the difference map after all the non-hydrogen atoms were located. However, only the hydrogen atoms of the Be-CH₃ and B-H groups were freely refined isotropically, while other hydrogen atoms were refined in calculated positions ($d_{C-H} = 0.96 \text{ Å}$; $U_{iso}(H) = 1.2U_{iso}(C)$). Block-diagonal least-squares refinement converged to R = 0.0518 (R_w = 0.0505). Inversion of configuration indicated the correct choice of enantiomorph. Atomic coordinates and thermal parameters for nonhydrogen atoms are listed in Table III, and selected bond distances and angles are listed in Tables I and II.

Conclusion

In summary, the terminal beryllium methyl complex $\{\eta^3$ -HB(3-Bu^tpz)₃}BeCH₃ has been synthesized by the reaction of Tl $\{\eta^3$ -HB(3-Bu^tpz)₃} with Be(CH₃)₂. The molecular structure of $\{\eta^3$ -HB(3-Bu^tpz)₃}BeCH₃ has been determined by X-ray diffraction, from which a value of 1.708(6) Å was obtained for the Be–CH₃ bond length. The complex $\{\eta^3$ -HB(3-Bu^tpz)₃}BeCH₃ is also characterized by a ⁹Be NMR resonance at δ 5.2 ppm (relative to [Be(H₂O)₄]²⁺). The reactions of $\{\eta^3$ -HB(3-Bu^tpz)₃}BeCH₃ with H₂S and I₂, giving $\{\eta^3$ -HB(3-Bu^tpz)₃}BeSH and $\{\eta^3$ -HB(3-Bu^tpz)₃}BeI, respectively, are similar to those of the hydride derivative $\{\eta^3$ -HB(3-Bu^tpz)₃}BeH, whereas the absence of reaction with CH₃I indicates that the hydride derivative is substantially more reactive.

Acknowledgment is made to the National Science Foundation (Grant CHE 90-07512) for support of this research. G.P. is the recipient of an A. P. Sloan Research Fellowship (1991–1993), a Camille and Henry Dreyfus Teacher-Scholar Award (1991– 1996), and a Presidential Faculty Fellowship Award (1992–1997). We are particularly grateful to Professor R. A. Andersen for helpful discussions.

Supplementary Material Available: Tables SI-SVI, listing crystal and intensity collection data, atomic coordinates, bond distances and angles, and anisotropic displacement parameters for $\{\eta^3$ -HB(3-Bu'pz)_3\}BeCH_3 (7 pages). Ordering information is given on any current masthead page.

 ^{(18) (}a) McNally, J. P.; Leong, V. S.; Cooper, N. J. ACS Symp. Ser. 1987, 357, 6-23. (b) Burger, B. J.; Bercaw, J. E. ACS Symp. Ser. 1987, 357, 79-97.

⁽¹⁹⁾ Gilman, H.; Schulze, F. J. Chem. Soc. 1927, 2663-2669.

⁽²⁰⁾ Sheldrick, G. M. SHELXTL, An Integrated System for Solving, Refining and Displaying Crystal Structures from Diffraction Data. University of Göttingen, Göttingen, Germany, 1981.